The contributions of surface charge and geometry to protein-solvent interaction

نویسنده

  • Lincong Wang
چکیده

To better understand protein-solvent interaction we have analyzed a variety of physical and geometrical properties of the solvent-excluded surfaces (SESs) over a large set of soluble proteins with crystal structures. We discover that all have net negative surface charges and permanent electric dipoles. Moreover both SES area and surface charge as well as several physical and geometrical properties defined by them change with protein size via well-fitted power laws. The relevance to protein-solvent interaction of these physical and geometrical properties is supported by strong correlations between them and known hydrophobicity scales and by their large changes upon protein unfolding. The universal existence of negative surface charge and dipole, the characteristic surface geometry and power laws reveal fundamental but distinct roles of surface charge and SES in protein-solvent interaction and make it possible to describe solvation and hydrophobic effect using theories on anion solute in protic solvent. In particular the great significance of surface charge for protein-solvent interaction suggests that a change of perception may be needed since from solvation perspective folding into a native state is to optimize surface negative charge rather than to minimize the hydrophobic surface area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase

Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...

متن کامل

Formulation and optimization of a new cationic lipid-modified PLGA nanoparticle as delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein: An experimental design

Polymeric particles and liposomes are efficient tools to overcome the low immunogenicity of subunit vaccines. The aim of the present study was formulation and optimization of a new cationic lipid-modified PLGA nanoparticles (NPs) as a delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein. The cationic lipid-modified PLGA NPs containing HspX/EsxS fusion protein were prepared us...

متن کامل

Formulation and optimization of a new cationic lipid-modified PLGA nanoparticle as delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein: An experimental design

Polymeric particles and liposomes are efficient tools to overcome the low immunogenicity of subunit vaccines. The aim of the present study was formulation and optimization of a new cationic lipid-modified PLGA nanoparticles (NPs) as a delivery system for Mycobacterium tuberculosis HspX/EsxS fusion protein. The cationic lipid-modified PLGA NPs containing HspX/EsxS fusion protein were prepared us...

متن کامل

Chemisorption of Pyrimidine Nucleotide Onto Exterior Surface of Pristine B12N12 Nanocluster: A Theoretical Study

In this research, the interaction of pyrimidine molecule with pristine B12N12 nanocluster is studied in different phases to understand the effect of environment on the electronic properties of the designated adsorption complexes. To this end, the pyrimidine adsorption over B12N12 in the gas phase and water medium is investigated using density functional theory (DFT) at the B97D/6-31+G(d,p) leve...

متن کامل

Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations

In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scatter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016